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This paper is concerned with the relationship between the discount rate and
the nature of long-run behavior in dynamic optimization models. The theory is
developed under two conditions. The first is history independence, which rules out
multiple limit sets. The second is a condition that avoids the reversion to a stable
steady state, as the discount factor is lowered, once cycles have emerged. These
conditions appear to be the minimal restrictions that would allow analysis by a
bifurcation diagram. The results are illustrated by two well-known examples in this
literature, due to Sutherland and Weitzman�Samuelson. Journal of Economic
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1. INTRODUCTION

This paper is concerned with the following question: ``How is long-run
optimal behavior affected by changes in the rate at which the future is
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discounted?'' Our objective is to try to answer this question2 in terms of a
single bifurcation diagram, which plots the relation between the asymptotic
behavior of the typical optimal program and the discount factor.

There are two features about our exercise that are especially noteworthy.
First, for the dynamical system generated by our dynamic optimization
model, the law of motion is the optimal policy function. Even for very
simple examples of dynamic optimization models, it is difficult to obtain
the optimal policy function in closed form, and in general only a few basic
properties of it are known. Nevertheless, we are able to obtain a fairly
complete global bifurcation analysis for the family of dynamic optimization
models as the discount factor is varied. This feature distinguishes our
exercise from much of the mathematical literature, where the relevant law
of motion is often known in closed form (for example, the quadratic family
of maps), and a standard method of generating a bifurcation diagram is by
iteration, on a computer, using this law of motion.3

Second, the class of examples that we study in detail, indicates an inter-
esting feature about the transition from global asymptotic stability of
optimal programs (to the stationary optimal stock) at high discount factors
to global asymptotically stable cyclical behavior of optimal programs at
lower discount factors. We do not always observe two-period cycles being
``born,'' and gradually developing into cycles with larger amplitude as the
discount factor falls. Instead, in some cases, two-period cycles appear past
the bifurcation point, fully ``grown up.'' Thus, in these cases, we are unlikely
to observe ``small cycles'' on a sustained basis; loosely speaking, we are likely
to observe either (approximately) stationary behavior or ``large cycles.''

There is a basic observation one can make regarding our stated objective.
Since we would like a single bifurcation diagram to represent the relationship
between discounting and long-run behavior, the dynamical system generated
by our optimization model must be history independent, for each specification
of the discount factor. That is, the asymptotic behavior of optimal programs
from (almost) every initial stock must be independent of the initial stock itself.

To elaborate, let us consider the bifurcation diagram obtained in Fig. 1,
for a variation of the Weitzman�Samuelson example. Here, a point on the
graph ($

�
; x

�
) indicates that (given the transition possibility set, 0, and the

utility function, u, as fixed), if the discount factor is $
�
, and (xt)

�
0 is the

optimal program starting from the initial stock, x (in the state space
X=[0, 1]), then for (almost) every x, xt converges asymptotically to x

�
.
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2 This is a comparative dynamics question, in the terminology of Samuelson [28]. In
comparative dynamics, we change a parameter and ``we investigate the effect of this change
on the whole motion or behavior over time of the economic process under consideration'' (see
Samuelson [28, Chap. 10, 11 and Appendix B]). The mathematical method of addressing such
a question is now commonly known as bifurcation analysis.

3 For a typical bifurcation diagram obtained in this way, see Collet and Eckmann [10].



FIG. 1. Bifurcation diagram. Weitzman�Samuelson example: :+;<1, :=0.54, ;=0.45.

The section of the graph, given by ($� ; x� , y� ) indicates that if the discount
factor is $� , and (xt)

�
0 is the optimal program starting from the initial stock

x in X, then for (almost) every x, (x� , y� ) is the set of limit points of (xt)
�
0 .

[In particular, the section of the graph represented by ($� ; x� , y� ) does not
mean that optimal programs from some initial stocks converge to x� , while
optimal programs from some other initial stocks converge to y� ].

In general, the dynamical system generated by our optimization model
need not be history independent. For example, any dynamical system with
multiple locally stable periodic points is necessarily history dependent.
Thus, we need to impose some condition on our model in order to ensure
history independent behavior.

The mathematical literature on dynamical systems achieves history
independence by placing a restriction on the law of motion, known as the
``negative Schwartzian derivative'' condition. Since our law of motion is the
optimal policy function, which is difficult to obtain in closed form in even
very simple examples of dynamic optimization models, it is practically
impossible to evaluate whether or not this condition is satisfied by our
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dynamical system. This basic problem differentiates our exercise from that
appearing in the mathematical literature.

In the context of our special dynamic optimization model (which allows
for period two cycles but no more complicated behavior than that), the
device we employ is to place a condition (called Condition HI) on the optimal
policy function of a two-period optimization model in which the terminal
stock is restricted to be the same as the initial stock. This function can be
computed, and it can be verified that it satisfies Condition HI for a class
of examples, as we demonstrate in Sections 7 and 8 of the paper.

In order to complete our bifurcation analysis on the family of dynamical
systems, generated by optimization models with different discount factors,
we need to know how changes in the discount factor affect the local
stability of the (unique) stationary optimal stock. We impose a condition
on the model (see Condition US in Section 6) which ensures that the
stationary optimal stock is locally stable for high discount factors, it loses
its local stability when the discount factor gets lower than a critical level
and never regains its local stability thereafter. (In general, of course, there
might be several switches and reswitches between the two regimes). We
verify in Sections 7 and 8 that Condition US is satisfied for a robust class
of examples.

The family of examples in Section 7 constitute variations of the example
of Weitzman, as discussed in Samuelson [29].4 The class of examples in
Section 8 constitute variations of the example of Sutherland [36].5 Our
theory, when applied to these examples, yields a global bifurcation diagram
with the following features. There is a critical discount factor, $� , such that
for $>$� , optimal programs exhibit global asymptotic stability to the
(unique) stationary optimal stock, k$ ; and, for $<$� , optimal programs
converge to a two-period cycle. For the example of Section 7 (Section 8),
the amplitude of the two period cycle is seen to be monotonic (non-mono-
tonic) in the discount factor.

We briefly indicate, now, the relationship of this paper to the available
literature. The topic under discussion is best viewed as an exercise in trying
to understand the relationship between a dynamic optimization model
(specified by (0, u, $)) and the optimal policy function generated by it. A
basic question of interest in this area is whether the exercise of dynamic
optimization imposes some restrictions on the nature of the policy function.
Boldrin and Montrucchio [7] showed that any C2 function can be a policy
function of an appropriately defined dynamic optimization model.
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4 This example has been widely discussed in the literature; see, for example, Scheinkman
[31], McKenzie [17], Benhabib and Nishimura [3].

5 For discussions of Sutherland's example, see Cass and Shell [9], and Benhabib and
Nishimura [3].



One implication of this finding was that optimal programs can exhibit
chaotic dynamics, an observation that was verified by constructing suitable
examples in the context of various economic models by (among others)
Boldrin and Montrucchio [7], Deneckere and Pelikan [12], Majumdar
and Mitra [15] and Nishimura and Yano [23].

It turned out, though, that many of these examples had associated with
them, ``unreasonably low'' discount factors. A theory, examining the discount
factor restrictions that must necessarily emerge in ```rationalizing'' specific
classes of chaotic policy functions by dynamic optimization models, was
initiated by Sorger [33, 34]. For policy functions which generate period three
cycles, an exact discount factor restriction was obtained independently by
Mitra [20] and Nishimura and Yano [26].

Notwithstanding these discount factor restrictions (for specific classes of
chaotic policy functions), it is possible to generate optimal programs which
exhibit chaotic behavior when future utilities are discounted mildly, as
demonstrated by Nishimura, Sorger and Yano [22], and Nishimura and
Yano [24].

An aspect of the constructed examples in this literature, starting with the
basic techniques of Boldrin-Montrucchio [7], is that the constructed utility
function depends on the chosen discount factor. Thus, in a basic sense, this
literature fails to address the question of how optimal behavior changes
with changes in the discount factor, given the transition possibility set, 0,
and the utility function, u.6

This basic question has been investigated (at least partially) by several
authors. It is known, of course, that the standard one-sector neoclassical
model produces a degenerate bifurcation diagram as the discount factor is
varied, since the unique non-trivial stationary optimal stock is globally
asymptotically stable for all discount factors in (0, 1). For specific classes
of two-sector neoclassical models, Boldrin [5], Boldrin and Deneckere [6]
and Nishimura and Yano [25] have studied changes in the nature of
dynamic optimal behavior as the discount factor varies. In the context of
the more general reduced-form model considered in this paper, Benhabib
and Nishimura [3] provide an analysis of changes in the local stability
behavior of the stationary optimal stock with changes in the discount
factor.

The present investigation can be seen as a continuation of the above line
of research. Its principal distinction is (i) in identifying two general sufficient
conditions (history independence and unique switching) under which a satis-
factory bifurcation analysis can be carried out in the context of the reduced-
form model, which permits period-two cycles; and (ii) in demonstrating that
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6 This aspect was emphasized and brought to our attention in discussions with Lionel
McKenzie.



these sufficient conditions can be verified in the context of two well-known
classes of examples in this literature.

2. MATHEMATICAL PREREQUISITES

2a. Dynamical Systems

Let X=[0, 1] and g a map from X to X. We refer to X as the state
space, and to g as the law of motion of the state variable x # X. The pair
(X, g) is called a dynamical system. Thus, if xt # X is the state of the system
in time period t, (where t=0, 1, 2, ...) then xt+1= g(xt) # X is the state of
the system in time period (t+1).

We write g0(x)=x and for any integer t�1, gt(x)= g[ gt&1(x)]. If
x # X, the sequence {(x)=(gt(x))�

t=0 is called the trajectory from (the
initial condition) x. The orbit from x is the set #(x)=[ y: y= gt(x) for
some t�0]. The asymptotic behavior of a trajectory from x is described by
the limit set, |(x), which is defined as the set of all limit points of {(x).

A point x # X is a fixed point of g if g(x)=x. A point x # X is called
periodic if there is t�1 such that gt(x)=x. The smallest such t is called the
period of x.

Note that if x # X is a periodic point, then |(gt(x))=#(x) for every
t=0, 1, 2, .... A periodic point x̂ # X is locally stable if there is an open
interval U (in X) containing x̂, such that |(x)=#(x̂) for all x # U. In this
case, the periodic orbit #(x̂) is also called locally stable.

If g is continuously differentiable on X, and x̂ is a periodic point of
period t, then a sufficient condition for x̂ to be locally stable is that
|Dgt(x̂)|<1. If |Dgt(x̂)|>1, then x̂ is not locally stable.

2b. History Independence

When we say that a dynamical system is history independent, we wish to
convey the observation that the long-run (asymptotic) behavior of the state
variable is independent of the initial state. While one might require such
independence with respect to every initial state, it is more useful for many
applications to insist on independence with respect to (Lebesgue) almost
every initial state. Thus, a dynamical system will be history independent
when the asymptotic behavior of the typical trajectory is independent of its
initial state.

Formally, let (X, g) be a dynamical system and & the Lebesgue measure
on X. The dynamical system (X, g) is history independent if there is a subset
E of X, such that for &��almost every x in X, the limit set of x, |(x)=E.
It is history dependent if it is not history independent.
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2c. Bifurcation Maps

We will often be concerned with a family of dynamical systems, where
the members of the family are described by a parameter. Formally, let us
denote the parameter by + # P, where P is taken to be a compact interval
[a, b] in R, with a<b. A family of dynamical systems will then be denoted
by (X, g+) where g+ maps X to X for each + # P.

Suppose the dynamical system (X, g+) is history independent for every
+ # P. Then, for each +, we can find a set E(+), such that the limit set
|+(x), for Lebesgue almost every x in X, is equal to E(+). A bifurcation
map is the correspondence which associates with each + # P, its history
independent limit set E(+)/X. A bifurcation diagram is a diagrammatic
representation of the graph of the bifurcation map, (see Fig. 1).

3. THE MODEL

The model is described by a triple (0, u, $), where 0 is the transition
possibility set, u is the (period) utility function, and $ is the discount factor.

The following assumptions on (0, u, $) will be maintained throughout
the paper:

(A.1) 0=X_X, where X=[0, 1].

(A.2) u: 0 � R is a continuous function.

(A.3) u is concave on 0, and if (x, z) and (x, z$) belong to 0, with
u(x, z){u(x, z$), then for every 0<*<1, we have u(x, *z+(1&*) z$)>
*u(x, z)+(1&*) u(x, z$).

(A.4) If (x, z) # 0, and x�x$�1, 0�z$�z, then u(x$, z$)�u(x, z).
Also, M#max (x, z) # 0 u(x, z)>min(x, z) # 0 u(x, z)#m. Further defining
6=[(x, z) # 0 : u(x, z)>m], (i) if (x, z) # 6, and x<x$�1, then u(x$, z)
>u(x, z); (ii) if (x, z) # 6, and 0�z$<z, then u(x, z$)>u(x, z).

(A.5) 0<$<1.

A few remarks regarding the above assumptions are now in order.
Assumption (A.1) simplifies the nature of transitions; it is possible to
develop a theory with a more general transition possibility set, which is a
convex, compact subset of X_X, but it complicates the analysis without
adding anything essential to the theory. Assumptions (A.2) and (A.5) are
standard. Note that (A.3) ensures concavity of u, and a weaker form of
strict concavity (in the second argument) than is commonly used. Similarly
(A.4) ensures monotonicity of u, and strict monotonicity when the minimum
utility is not attained. Together, (A.3) and (A.4) ensure that an optimal policy
function exists in our framework.
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A few basic implications of our assumptions can now be noted. First, we
observe that

u(x, 0)>m for all 0<x�1 (3.1)

To see this, let (x*, z*) be such that u(x*, z*)=M. Then, by (A.4),
u(x*, z*)>m, and u(1, 0)>m. Since u(0, 0)�m, for 0<x�1, we have by
(A.3), u(x, 0)=u(x } 1+(1&x) } 0, x } 0+(1&x) } 0)�xu(1, 0)+(1&x) u(0, 0)
�xu(1, 0)+(1&x) m>xm+(1&x) m=m.

It follows from (3.1) that we have

u(x, z)>m for all 0<x�1, 0�z<1 (3.2)

For 0<x�1, we have u(x, 0)>m by (3.1); also, u(x, 1)�m. Thus, for
0<x�1, 0�z<1, we have u(x, z)=u(z } x+(1&z) } x, z } 1+(1&z) } 0)�
zu(x, 1)+(1&z) u(x, 0)>zm+(1&z) m=m.

It follows from (3.2) that we have

u(x, z$)>u(x, z) for all 0<x�1, 0�z$<z�1 (3.3)

To see this, notice that u(x, z$)>m by (3.2), while u(x, z)�u(x, z$) by
(A.4). Thus, if (3.3) were not to hold, we would have u(x, z)=u(x, z$)>m.
But then by (A.4), we must have u(x, z)<u(x, z$), a contradiction, which
establishes (3.3).

It also follows from (3.2) that

u(x$, z)>u(x, z) for all 0�x<x$�1, 0�z<1 (3.4)

To see this, notice that u(x$, z)>m by (3.2), and by (A.4), u(x$, z)�u(x, z).
Thus, if (3.4) were not to hold, then we would have u(x, z)=u(x$, z)>m.
But, then by (A.4), we must have u(x$, z)>u(x, z), a contradiction which
establishes (3.4).

A program from x # X is a sequence (xt)
�
0 satisfying

x0=x, and (xt , xt+1) # 0 for t�0

An optimal program from x # X is a program (x̂)�
0 from x, such that

:
�

t=0

$tu(x̂t , x̂t+1)� :
�

t=0

$tu(xt , xt+1)

for every program (xt) from x.
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4. VALUE AND POLICY FUNCTIONS

Under our maintained assumptions, there exists an optimal program
from every x # X. Thus, we can define a value function, V: X � R by

V(x)= :
�

t=0

$tu(x̂t , x̂t+1)

where (x̂t)
�
0 is an optimal program from x. Then, V is concave and

continuous on X.7

It can be shown that for each x # X, the Bellman equation

V(x)=max
z # X

[u(x, z)+$V(z)]

holds. For each x # X, we denote by h(x) the set of z # X which maximize
[u(x, z)+$V(z)], among all z # X. That is, for each x # X

h(x)=arg[max
z # X

[u(x, z)+$V(z)]]

Then, a program (xt)
�
0 from x # X is an optimal program from x if and

only if V(xt)=u(xt , xt+1)+$V(xt+1) for t�0; that is, if and only if
xt+1 # h(xt).

We call h the (optimal) policy correspondence. In order to demonstrate
the existence of an optimal policy function, we have to show that h(x) is
a singleton for each x # X.

Consider, first, the case x>0. Suppose that z and z$ both belong to h(x),
with z>z$. Thus (xt) and (x$t) are both optimal from x, with x1=z, x$1=z$.
By (3.3) we have u(x, z$)>u(x, z). Then, defining xt"=*xt+(1&*) x$t for
t�0, where 0<*<1, (xt") is a program from x. Further, u(x"0 , x"1)>
*u(x0 , x1)+(1&*) u(x$0 , x$1), and for t�1, u(xt" , x"t+1)�*u(xt , xt+1)+
(1&*) u(x$t , x$t+1). Thus, we get ��

0 $tu(xt" , x"t+1)>*V(x)+(1&*) V(x)
=V(x), a contradiction to the definition of V.

Consider, next, the case x=0. Suppose, as before, that z and z$ both
belong to h(0), with z>z$. If u(0, z){u(0, z$), the proof leading to a contra-
diction is the same as above. So, consider the case where u(0, z)=u(0, z$).
Clearly, the common value cannot be greater than m, for then we must
have u(0, z$)>u(0, z) by (A.4). Thus, u(0, z)=u(0, z$)=m.

Let (x$t) be optimal from x=0, with x$1=z$. Then (x, z, x$2 , x$3 , ...) is also
optimal from x, since u(x, z)=u(x, z$), and u(z, x$2)�u(z$, x$2) by (A.4). By
optimality of (x$t), we must then have u(z, x$2)=u(z$, x$2). As before, this
common value must equal m, otherwise using z>z$ and (A.4), we get a
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contradiction. By (3.2), then, we must have x$2=1. Since (x$t) is optimal, we
get

(1+$) m+$2V(1)=u(0, z)+$u(z, 1)+$2V(1)=V(0) (4.1)

The sequence (0, 1, x$3 , x$4 , ...) is a program from x=0, and so using (4.1),

m+$V(1)�u(0, 1)+$V(1)�(1+$) m+$2V(1) (4.2)

This leads to the conclusion that

V(1)�m�(1&$) (4.3)

But this clearly contradicts (3.1).
We have shown that h is a function from X to X. That is, for every x # X,

there is a unique optimal program from x. We refer to h as the (optimal)
policy function. It can be shown that h is continuous on X.8

Following the analysis of Topkis [37], we know that the optimal policy
function can be shown to be monotonic non-decreasing if the utility func-
tion is supermodular and monotonic non-increasing if the utility function
is submodular.9

Since we want to allow the dynamical system (X, h) to exhibit cyclical
behavior, we assume that the utility function is submodular. That is, we
assume

(A.6) If x, x$, z, z$ belong to X, and x$>x, z$>z, then u(x$, z$)+
u(x, z)�u(x$, z)+u(x, z$)

Under this additional assumption, it can be shown that h is monotoni-
cally non-increasing on X. Furthermore, there is a unique fixed point of the
optimal policy function, h, which we call the stationary optimal stock.

5. HISTORY INDEPENDENCE

5a. Background

The dynamical system (X, h) generated by the dynamic optimization
model (0, u, $) is well-behaved in many respects. However, it is still
difficult to construct a bifurcation diagram to indicate how the behavior of
the dynamical system changes as the discount factor changes.

We show in this paper that for a class of dynamic optimization models,
this task can be accomplished satisfactorily. This class is identified by two
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conditions, which we refer to as history independence (Condition HI) and
unique switching (Condition US). We examine the former condition in this
section; the latter condition is taken up in Section 6.

To proceed with our analysis, we strengthen our basic set of assumptions
on the dynamic optimization model as follows:

(A.2+) u: 0 � R is a continuous function, and u is C2 on the
interior of 0.

(A.3+) u is concave on 0, and if (x, z) and (x, z$) belong to 0 with
u(x, z){u(x, z$), then for every 0<*<1, we have u(x, *z+(1&*) z$)>
*u(x, z)+(1&*) u(x, z$). Further, for all (x, z) in int 0, u11(x, z)<0, and
u11(x, z) u22(x, z)&[u12(x, z)]2�0.

(A.4+) If (x, z) # 0, and 1�x$�x, 0�z$�z, then u(x$, z$)�u(x, z).
Also M#max(x, z) # 0 u(x, z)>min(x, z) # 0 u(x, z)#m. Further, defining
6=[(x, z) # 0 : u(x, z)>m], (i) If (x, z) # 6, and x<x$�1, then u(x$, z)
>u(x, z); (ii) If (x, z) # 6, and 0�z$<z, then u(x, z$)>u(x, z). And, for
all (x, z) in int 0, u1(x, z)>0, u2(x, z)<0.

(A.6+) If x, x$, z, z$ belong to X, and x$>x, z$>z, then u(x$, z$)+
u(x, z)�u(x$, z)+u(x, z$). Also, for all (x, z) in int 0, u12(x, z)<0.

These strengthened assumptions reflect the C 2-differentiability of the
utility function on the interior of the transition possibility set [(A.2+)],
and the differential forms of concavity [(A.3+)], monotonicity [(A.4+)]
and submodularity [(A.6+)] on that set.10

Under these strengthened assumptions, if (x, h(x)) # int 0, then the
Ramsey�Euler equation holds:

u2(x, h(x))+$u1(h(x), h2(x))=0 (5.1)

Further, if (x, h(x)) # int 0, and x$>x, then h(x$)<h(x). We verify this,
first, for 1>x$>x. Since h is non-increasing, we have h(x$)�h(x). So, if
the strict inequality did not hold, then h(x$)=h(x), and (x$, h(x$)) # int 0.
Thus, the following Ramsey�Euler equations must hold:

u2(x, h(x))+$u1(h(x), h2(x))=0; u2(x$, h(x))+$u1(h(x), h2(x))=0

So, u2(x, h(x))=u2(x$, h(x)), which contradicts the fact that u12(x, z)<0 in
int 0. When x$=1, h(x$)<h(x) follows from the result just established and
the fact that h is non-increasing on X.
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Our assumptions also ensure that for x # int 0, the ratio

?(x)=[&u2(x, x)]�u1(x, x)

is increasing in x. We now assume the following end-point condition:

(A.7) limx � 0 ?(x)=0 and limx � 1 ?(x)>1.

Then, given any $ # (0, 1), there is a unique solution, k$ , to the equation:
?(x)=$. This k$ is in the interior of X, and is the unique stationary
optimal stock.

A useful property for the analysis in this section is a bound on the slope
of the optimal policy function at the stationary optimal stock, k$ , written
as k below to ease the notation.

Note that, under our assumptions, if (x, h(x)) # int 0, then (by Theorem
1 of Benveniste and Scheinkman [4]) the value function V is differentiable
at x, and V$(x)=u1(x, h(x)).

Since (k, k) # int 0, we can find a neighborhood N(k) of k, such that for
all x # N(k), (x, h(x)) and (h(x), h2(x)) are in the interior of 0.

Let x # N(k), with x{k. To be precise, let x<k, so that h(x)>k and
h2(x)<k. [The case x>k can be handled similarly]. Then V$(x)=
u1(x, h(x)) and $V$(h(x))=$u1(h(x), h2(x))=&u2(x, h(x)). Similarly
V$(k)=u1(k, k) and $V$(k)=$u1(k, k)=&u2(k, k). Thus, using concavity
of u, we obtain the following two inequalities:

u(x, h(x))+$V$(h(x)) h(x)&V$(x) x�u(k, k)+$V$(h(x)) k&V$(x) k

u(k, k)+$V$(k) k&V$(k) k�u(x, h(x))+$V$(k) h(x)&V$(k) x

Adding the inequalities and transposing terms

$[V$(h(x))&V$(k)][k&h(x)]�[V$(x)&V$(k)][k&x]

Iterating on this relationship, we get

$2[V$(h2(x))&V$(k)][k&h2(x)]�[V$(x)&V$(k)][k&x]

This yields the inequality

$2[k&h2(x)]�[k&x]�[V$(x)&V$(k)]�[V$(h2(x))&V$(k)]

We claim now that

$2[k&h2(x)]�[k&x]�1 (5.2)

For, if (5.2) were violated, we would have [k&h2(x)]>[k&x]�$2>
[k&x]. Thus, we must have h2(x)<x<k, and V$(h2(x))�V$(x)�V$(k),
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so that [V$(x)&V$(k)]�[V$(h2(x))&V$(k)]�1. But then (5.2) must hold,
a contradiction, which establishes (5.2).

5b. A Sufficient Condition for History Independence

A difficult step in our exercise is to devise a suitable sufficient condition
for history independence. The mathematical literature provides a remarkably
powerful condition for this purpose. The condition is that the dynamical
system (X, g) satisfy g is C 3 and unimodal and the Schwartzian derivative
of g is negative:

S(g(x))=(g$$$(x)�g$(x))&(3�2)(g"(x)�g$(x))2<0

at all points x # X, where g$(x){0. [For the mathematical theory, see
especially Singer [32], Guckenheimer [14], Misiurewicz [19] and DeMelo
and van Strien [11]].

Unfortunately, this turns out to be not very useful for our purpose. One
problem is that it is considerably difficult to ensure that the policy function,
h, is C1, and we know that higher-order differentiability of h does not hold
typically (see Santos [30], Araujo [1] for a complete discussion of this
issue). But this is probably not a major obstacle, because the negative
Schwartzian derivative condition can be written without differentiability by
using the concept of ``cross-ratios'' (see, for example, Guckenheimer [14]).

The more serious impediment appears to be the problem in assessing the
meaning of this restriction on the policy function, even in a purely technical
sense. This is because we do not typically know the policy function, but
only a few of its basic properties, as discussed in Section 4. Even for simple
examples of dynamic optimization models, we cannot, in most cases, obtain
the policy function in closed form to verify whether or not it satisfies the
negative Schwartzian derivative condition.

The device we use to get around these problems is to impose a condition,
similar in spirit to the negative Schwartzian derivative condition, on the
optimal policy function, f, of a two-period optimization problem, in which
the terminal stock is restricted to be the same as the initial stock. The
reason for focusing on the two-period optimization problem is that the
fixed point of h coincides with the fixed point of f, and interior two-period
cycles generated by h coincide with those generated by f.

Further, properties of f can readily be derived from the properties on the
primitives of the model (0, u, $). In particular, the condition on f which
ensures history independence (see Condition HI in subsection 5d below)
can be checked for robust classes of examples, as is demonstrated for varia-
tions on the examples of Weitzman�Samuelson [29] and Sutherland [36]
in Sections 7 and 8 respectively.
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5c. On a Two-Period Optimization Problem

For x # X, consider the following optimization problem:

Max
Subject to

u(x, z)+$u(z, x)
z # X = (P)

For each x, problem (P) has a solution. Let W(x) be the maximized value
associated with (P).

It can be shown that for each x # X, (P) has a unique solution. Suppose,
on the contrary, that for some x # X, z and z$ both solve (P), where z>z$.
If x>0, then by (3.3), u(x, z$)>u(x, z). Thus, defining z"=*z+(1&*) z$,
where 0<*<1, we get u(x, z")+$u(z", x)=u(x, *z+(1&*) z$)+$u(*z+
(1&*) z$, x) > [*u(x, z) + (1&*) u(x; z$)] + $[*u(z, x)+(1&*) u(z$, x)]
=*W(x)+(1&*) W(x)=W(x), a contradiction. If x=0, then the above
argument leads to a contradiction when u(x, z$)>u(x, z). And, when
u(x, z$)=u(x, z), then we have W(x)=u(x, z)+$u(z, x)=u(x, z$)+
$u(z, x)>u(x, z$)+$u(z$, x) [by (3.4)] =W(x), a contradiction.

Let us denote the unique solution of (P), corresponding to x # X, by
f (x). We also denote the second iterate of f (that is, f 2) by F.

It can be checked that (i) f is continuous on X; (ii) f is non-increasing
on X, and if (x, f (x)) is in int 0, and x$>x, then f (x$)< f (x). The con-
tinuity of f ((i) above) follows as usual by an application of the Maximum
Theorem. The monotonicity properties of f ((ii) above) can be established
by following the analysis used to establish the corresponding monotonicity
properties of h.

If (x, f (x)) is in int 0, then we have the first-order condition:

u2(x, f (x))+$u1( f (x), x)=0 (5.3)

Since u22(x, f (x))+$u11( f (x), x)<0, we can use the implicit function
theorem to conclude that f is differentiable at x, and u21 ( x, f ( x ) ) +
[u22(x, f (x))+$u11( f (x), x)] f $(x)+$u12( f (x), x)=0, which yields

f $(x)=&
[u21(x, f (x))+$u12( f (x), x)]
[u22(x, f (x))+$u11( f (x), x)]

(5.4)

Thus, f $(x)<0 whenever (x, f (x)) # int 0.

5d. Condition HI and Its Implications

We are now ready to introduce Condition HI.

Condition HI (history independence). If a, b, c are fixed points of F, and
a<b<c, then F $(b)>1.
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Our strategy in studying the implications of Condition HI (which will
also clarify the meaning of the condition) is as follows. The magnitude of
the derivative of f at the stationary optimal stock, k$ , gives us informa-
tion11 on the magnitudes of the roots of the characteristic equation
associated with the Ramsey�Euler equation (5.1) at x=k$ .

These roots in turn provide us with information12 about the local
stability (or instability) of the stationary optimal stock, k$ , as a fixed point
of the dynamical system (X, h).

Finally, Condition HI then ensures (almost) global asymptotic stability
of the stationary optimal stock when it is locally stable. And, it ensures
(almost) global asymptotic stability of a two-period cycle when the stationary
optimal stock is locally unstable.

We now take up the formal analysis corresponding to each step of the
above argument. For this purpose, it is convenient to break up our analysis
into two cases, which we will call the ``stable case'' and the ``unstable case.''

The stable case: 0<[&f $(k$)]<1.

Step 1. We can write the characteristic equation [associated with the
Ramsey�Euler equation (5.1) at x=k$], as follows:

u12(k, k)+[u22(k, k)+$u11(k, k)] *+$u12(k, k) *2=0 (5.5)

where we denote k$ by k to ease the notation.
Denoting the roots of the characteristic equation by *1 and *2 (where *1

has the least absolute value), we can infer that k is ``saddle-point stable,''
that is

0<(&*1)<1<(&*2) (5.6)

To see this, observe first that by using (A.3+), (A.4+), *1 and *2 are real,
and

*1*2=(1�$); (*1+*2)=&[[u22(k, k)+$u11(k, k)]�$u12(k, k)] (5.7)

Thus, *1 and *2 are both negative, with (&*2)2�(&*1)(&*2)=(1�$), so
that (&*2)>1.

Next, notice that (5.4) yields

[&f $(k)]=
(1+$)[&u12(k, k)]

[&u22(k, k)]+$[&u11(k, k)]
(5.8)
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negative-definite Hessian of the utility function, an assumption we do not make.



Thus, in the ``stable case'' [0<(&f $(k))<1], we have

(1+$)[&u12(k, k)]<[&u22(k, k)]+$[&u11(k, k)] (5.9)

Using (5.7) and (5.9), we then obtain (1+*1)(1+*2)=1+*1+*2+*1*2

=[1�$(&u12(k, k)) ][ (1 + $)(&u12(k, k)) & (&u22(k, k))&$(&u11(k, k))]
<0. Since (&*2)>1, we must have (1+*1)>0, and so (&*1)<1. This
verifies (5.6).

Step 2. Let N(k) be a neighborhood of k, such that for all x # N(k),
(x, h(x)) and (h(x), h2(x)) # int 0. For x # N(k), define

M=max _lim sup
x � k& }h(x)&h(k)

x&k } , lim sup
x � k+ } h(x)&h(k)

x&k }& .

By the analysis in the Appendix, M is either (&*1) or (&*2). We now
show that M=(&*1).

By (A.1), we have

u~ 21+[(&u~ 22)+$(&u� 11)][[h(x)&h(k)]�(k&x)]

&$(&u� 12)[[h2(k)&h2(x)]�(k&x)]=0

Using (5.2) we get

[(&u~ 22)+$(&u� 11)][[h(x)&h(k)]�(k&x)]�(&u~ 21)+[(&u� 12)�$]

Thus, we obtain (by letting x � k),

|Dh(k)|�(1+$)[&u12(k, k)]�$[(&u22(k, k))+$(&u11(k, k))]

=[&f $(k)]�$

for every Dini-derivative at k. Since [&f $(k)]<1, we get |Dh(k)|<(1�$)
<(&*2). Thus, M<(&*2) and consequently M=(&*1)<1.

The above analysis implies that there is =>0, such that for all
x # (k, k+=), h2(x)<x and for all x # (k&=, k) h2(x)>x.

Step 3. Since [&f $(k)]<1, there is =$>0 such that for all x #
(k, k+=$), F(x)<x and for all x # (k&=$, k), F(x)>x.

Using Condition HI, we can infer that there is no y # (0, k) satisfying
F( y)= y. Otherwise y, k, f ( y) are fixed points of F, with y<k< f ( y),
and F $(k)>1, a contradiction. Similarly, there is no y # (k, 1) satisfying
F( y)= y. Thus, F(x)<x for all x # (k, 1) and F(x)>x for all x # (0, k).
(See Fig. 2 for an illustration).
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FIG. 2. Implication of condition HI (stable case): Diagram of F= f 2 for 1>$>$*.

Since interior period-two points of h coincide with the interior period-
two points of f, there is no y # (0, k) _ (k, 1) satisfying H( y)#h2( y)= y.
Given the conclusion of Step 2, we must, therefore, have H(x)<x for all
x # (k, 1) and H(x)>x for all x # (0, k).

If x # (0, k), we must then have, along the optimal program (xt) from
x, x2t increasing in t and converging to k, and x2t+1 , decreasing in t and
converging to k. A similar statement can be made for x # (k, 1). Thus, for
almost every x # X, we have the optimal program (xt) from x converging
to k.

The Unstable Case: [&f $(k$)]>1.

Step 1. Denoting the roots of the characteristic equation (5.5) by *1

and *2 (where *1 has the least absolute value), we can infer that *1 , *2 are
real and negative and satisfy (5.7); further, k is ``totally unstable;'' that is

(&*2)�(&*1)>1 (5.10)
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To show that (&*1)>1, we use (5.8) and the information that [&f $(k)]
>1. This yields:

(1+$)[&u12(k, k)]>[&u22(k, k)]+$[&u11(k, k)] (5.11)

Using (5.7) and (5.11), we then obtain (1+*1)(1+*2)=1+*1+*2+
*1*2=[1�$(&u12(k, k))][(1+$)(&u12(k, k))&(&u22(k, k))&$(&u11(k, k))]
>0. We have from (5.7) the information that (&*2)2�(&*1)(&*2)=
(1�$)>1, so that (&*2)>1. Thus, we must have (1+*1)<0, so that
(&*1)>1, verifying (5.10).

Step 2. Using the analysis of the Appendix, we know that m is either
(&*1) or (&*2), where

m#min _lim inf
x � k& } h(x)&h(k)

x&k } , lim inf
x � k+ } h(x)&h(k)

x&k }& .

Since (&*2)�(&*1)>1, we have m>1. This establishes that there is =>0,
such that for all x # (k, k+=), h2(x)>x, and for all x # (k&=, k), h2(x)<x.

Step 3. Since [&f $(k)]>1, there is =$>0 such that for all x #
(k, k+=$), F(x)>x and for all x # (k&=$, k), F(x)<x.

Using Condition HI, we can infer that there is exactly one value of
y # [0, k) satisfying F( y)= y. Otherwise, denoting by z the supremum of
the fixed points of F, which are smaller than k, we have F(z)=z and z<k,
with F $(z)�1. Then considering any fixed point y<z, we have a contradic-
tion to Condition HI. Similarly, there is exactly one value of z # (k, 1]
satisfying F(z)=z; namely z= f ( y). Call these values of y and z, y* and z*.
Clearly [ y*, z*] is the unique period-two cycle of the dynamical system
(X, f ). (See Fig. 3 for an illustration).
Since interior period-two points of h coincide with the interior period-two
points of f, we must have H(x)<x for all x # (0, k) if y*=0, and H(x)<x
for all x # ( y*, k), H(x)>x for all x # (0, y*) if y*>0. Similarly, we must
have H(x)>x for all x # (k, 1) if z*=1, and H(x)>x for all
x # (k, z*), H(x)<x for all x # (z*, 1) if z*<1.

If x # (0, k), we must then have, along the optimal program (xt) from
x, x2t converging to y* (monotonically decreasing if x> y*, and mono-
tonically increasing if 0<x< y*). Also, x2t+1 , must converge to z*
(monotonically increasing if x> y*, and monotonically decreasing if
0<x< y*). A similar statement can be made for x # (k, 1). Thus, for
almost every x # X, we have the set of limit points of the optimal program
(xt) from x is [ y*, z*]. Clearly [ y*, z*] is the unique period two-cycle of
the dynamical system (X, h).
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FIG. 3. Implication of condition HI (unstable case): Diagram of F= f 2 for 0<$<$*.

6. DISCOUNTING AND THE STATIONARY OPTIMAL STOCK

Our objective is to see how the behavior of the dynamical system
generated by the dynamic optimization model changes as the discount
factor (of the dynamic optimization model) changes. In this section, we
examine, as a basic step in this enquiry, how the stationary optimal stock,
and its local stability property, are altered as the discount factor changes.

It is important, at this point, to recognize explicitly the fact that the
policy function, and therefore its fixed point (the stationary optimal stock)
depends on the discount factor. Henceforth, we consider (0, u) as fixed,
and treat $ as a parameter, varying in (0,1). The dynamical system
generated by (0, u, $) is denoted by (X, h$) and the fixed point of h$ by k$ .

6a. Monotonicity and Differentiability

The stationary optimal stock, k$ , can be shown to be monotonically
increasing in the discount factor, $. To see this, note that, for each
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0<$<1, the stationary optimal stock, k$ , satisfies 0<k$<1, and so by
the Euler equation

[&u2(k$ , k$)]�u1(k$ , k$)=$ (6.1)

Let 0<$$<$"<1, and suppose k$$�k$" . Then since (&u21) and (&u22)
are positive on int 0, [&u2(k$" , k$")]�[&u2(k$$ , k$$)]. And since u11 and
u12 are negative on int 0, we have u1(k$" , k$")�u1(k$$ , k$$). Thus, we must
have

[&u2(k$" , k$")]�u1(k$" , k$")�[&u2(k$$ , k$$)]�u1(k$$ , k$$) (6.2)

But the left hand side of (6.2) is $" and the right hand side of (6.2) is $$,
so we must have $"�$$ a contradiction to the hypothesis that $$<$".

To establish continuous differentiability of k$ with respect to $, define

J(k, $)=[[&u2(k, k)]�u1(k, k)]&$

for k # (0, 1) and $ # (0, 1). Then, J1(k, $)=[u1 (k, k)[&u21(k, k)&u22(k, k)]
+[&u2(k, k)][&u11(k, k)&u12(k, k)]]�u1(k, k)2>0. So, using J(k$ , $)=0,
and the implicit function theorem, k$ is continuously differentiable with
respect to $.

Two end-point properties of k$ as a function of $ can also be established.
Let us denote

lim
$ � 0

k$ #k0; lim
$ � 1

k$ #k1 (6.3)

We can establish that k0=0. For if k0>0, then letting $ converge to zero
in (6.1), we would get

[[&u2(k0, k0)]�u1(k0, k0)]=0 (6.4)

But since 0<k0<1, [&u2(k0, k0)]>0 and u1(k0, k0)>0 by (A.4+),
which contradicts (6.4).

We can also prove that k1<1. For if k1=1, then letting $ converge to
1 in (6.1), we get

lim
x � 1

?(x)=1 (6.5)

which contradicts (A.7).

6b. Stability of the Stationary Optimal Stock under Mild Discounting

Assumption (A.3+) ensures us that

max[(&u11(k1, k1)), (&u22(k1, k1))]�(&u12(k1, k1)).
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We proceed now to assume that:

(A.8) max[(&u11(k1, k1)), (&u22(k1, k1))]>(&u12(k1, k1)).

Notice that if (&u11(k1, k1))(&u22(k1, k1))>(&u12(k1, k1))2 then (A.8) is
clearly satisfied. Also, if (&u11(k1, k1))(&u22(k1, k1))=(&u12(k1, k1))2,
(A.8) is still satisfied, if (&u11(k1, k1)){(&u22(k1, k1)).

Under (A.8), we have [(&u11(k1, k1))+(&u22(k1, k1))]>2(&u12(k1, k1)).
For $ close to 1, k$ is close to k1, and so [(&u11(k$ , k$))+(&u22(k$ , k$))]
>(1+$)(&u12(k$ , k$)). Thus, [&f $(k$)]<1, and we are in the ``Stable
Case''. That is, k$ is (almost) globally asymptotically stable.13

Beyond this, it is not possible in general to infer whether k$ loses its local
stability for some discount factors. If it loses its local stability (for $ not
close to 1), it is also not possible in general to infer whether k$ regains its
local stability for still lower discount factors. It would appear that many
patterns of behavior are possible.

6c. Condition US (Unique Switching)

In general, the set of discount factors for which local stability of the
stationary optimal stock holds may be a complicated set to describe.
Condition US ensures that there is a critical discount factor, $*, such that
(i) for $*<$<1, the stationary optimal stock is locally stable, and (ii) for
0<$<$*, the stationary optimal stock is locally unstable.

Condition US (unique switching). The function R: (0, 1) � R++ , defined
by:

R(x)=
[&u2(x, x)][&u11(x, x)]+u1(x, x)[&u22(x, x)]

[u1(x, x)+(&u2(x, x))][&u12(x, x)]

satisfies R(x) a R as x a 0 where R # (0, 1).
Under (A.8), R(k1)>1, and so R(k$)>1 for $ close to 1. When $ a 0,

we know that k$ a 0, and so R(k$) a R # (0, 1). Thus, there is a unique
$* # (0, 1), such that R(k$*)=1. For $*<$<1, R(k$)>R(k$*)=1,
and so [&f $(k$)]<1, which yields the ``stable case.'' For 0<$<$*,
R(k$)<R(k$*)=1, so that [&f $(k$)]>1, which yields the ``unstable case''
(see Fig. 4). Thus, Condition HI and Condition US yield a complete bifur-
cation diagram of typical long-run optimal behavior as the discount factor
varies.
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FIG. 4. Graph of R(x) for Weitzman�Samuelson example: Condition US. :=0.54, ;=0.45.

7. VARIATIONS ON THE WEITZMAN�SAMUELSON EXAMPLE

We discuss in this section a variation on the example of Weitzman, as
reported in Samuelson [29]. The utility function, u: 0 � R is given by:

u(x, z)=x:(1&z); where (:, ;)>>0, (:+;)�1, :>0.5 (7.1)

Then, assumptions (A.1), (A.2+), (A.3+), (A.4+), (A.5), (A.6+), (A.7)
and (A.8) are satisfied.

We now proceed to show that Condition HI is satisfied. It is easy to
verify that, given any $ # (0, 1), the unique stationary optimal stock, k$ , is
given by

k$=$:�(;+$:) (7.2)

We verify Condition HI as follows. We first show that if F(x)=x has
three solutions 0<a<b<c<1, then the discount factor, $, is smaller than
a critical discount factor, $*; that is,

$<$*#;(2:&1)�:(1&2;) (7.3)
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Next, we show that if b is also a fixed point of f, and 0<$<$*, then
[&f $(k$)]>1, so that

F $(k$)=[F $(k$)]2>1 (7.4)

To establish (7.3), suppose instead that 1>$�$*. If 0<x<1 is any
fixed point of F, then denoting f (x) by y, we have the following two
Ramsey�Euler equations:

;y:(1&x);&1=$:x:&1(1& y); (7.5)

;x:(1& y);&1=$:y:&1(1&x); (7.6)

Dividing (7.5) by (7.6), we obtain ( y�x):(1&x);&1�(1& y);&1=
(x�y):&1 (1& y);�(1&x);, which can be simplified to: ( y�x)2:&1=
(1& y)2;&1�(1&x)2;&1. This yields:

y=x[(1&x)�(1& y)](1&2;)�(2:&1) (7.7)

Multiplying (7.5) by (7.6), we obtain

;2xy=$2:2(1&x)(1& y) (7.8)

Substituting (7.7) in (7.8), we get ;2x2 ( 1 & x )2 (1 & : & ; ) � ( 2: & 1 ) =
$2:2(1&y)2(:&;)�(2:&1), which yields:

(1& y)=(;�$:) (2:&1)�(:&;)x(2:&1)�(:&;)(1&x) (1&:&;)�(:&;) (7.9)

Substituting (7.9) in (7.8), we get an equation involving only x:

;2x[1&(;�$:) (2:&1)�(:&;)x(2:&1)�(:&;)(1&x) (1&:&;)�(:&;)]

=$2:2(1&x)(;�$:) (2:&1)�(:&;)x(2:&1)�(:&;)(1&x)(1&:&;)�(:&;)

(7.10)

Dividing (7.10) by x and rearranging terms, we get

;2&;2(;�$:) (2:+1)�(:&;)x(2:&1)�(:&;)(1&x) (1&:&;)�(:&;)

&$2:2(;�$:) (2:&1)�(:&;)x(:+;&1)�(:&;)(1&x) (1&2;)�(:&;)=0

(7.11)

278 MITRA AND NISHIMURA



We denote the left-hand side of (7.11) by G(x). Then 0<a<b<c<1 are
solutions of the equation G(x)=0. By Rolle's theorem, there exist a<a� <b
and b<c� <c such that

G$(a� )=0 and G$(c� )=0 (7.12)

That is, there are two distinct real roots of G$(x)=0 in (0,1).
We can differentiate G(x) and simplify the expression to obtain

G$(x)=[$2:2�(:&;)](;�$:) (2:&1)�(:&;)

_[(1&x)�x]2 [(1&:&;)(;�$:)2 [x�(1&x)]2

&[(;�$:)2 (2:&1)&(1&2;)][x�(1&x)]+(1&:&;)]

(7.13)

It follows that a� and c� are solutions of the equation

(1&:&;)(;�$:)2 [x�(1&x)]2&[(;�$:)2 (2:&1)&(1&2;)][x�(1&x)]

+(1&:&;)=0 (7.14)

Denoting [a� �(1&a� )] by A, [c� �(1&c� )] by B, we have 0<A<B, and A
and B are solutions of:

(1&:&;)(;�$:)2 z2&[(;�$:)2 (2:&1)&(1&2;)] z+(1&:&;)=0

(7.15)

This implies (;�$:)2 (2:&1)&(1&2;)>0, and the discriminant of (7.15)
must be positive, so that

(;�$:)2 (2:&1)&(1&2;)>2(1&:&;)(;�$:) (7.16)

which can be rewritten as

(;�$:)2 [(2:&1)�(1&2;)]&1>2(;�$:)(1&:&;)�(1&2;) (7.17)

Now, (;�$:)2 [(2:&1)�(1&2;)]=(;�$:)($� �$)�(;�$:). Thus, (7.17)
yields

(;�$:)[1&[2(1&:&;)�(1&2;)]]>1 (7.18)

But the left-hand side of (7.18) is (;�$:)[(1&2;&2+2:+2;)�(1&2;)]
=(;�$:)(2:&1)�(1&2;)=($*�$)�1, a contradiction. This establishes (7.3).

Since G$(x)=0 has exactly two solutions (a� and c� ) a, b, c are the only
fixed points of F. Since f is monotonic, b must be a fixed point of f, and
b=k$ . We now proceed to establish (7.4).
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For any 0<x<1, we have 0< f (x)<1, and the Euler equation:

;x:[1& f (x)];&1=$:[ f (x)]:&1 (1&x);

is satisfied. This can be written as

(;�$:)[x:�(1&x);]=[1& f (x)]1&;�f (x)1&: (7.19)

Differentiating (7.19) with respect to x,

(;�$:)[(1&x); :x:&1+x:;(1&x);&1]�(1&x)2;

=[ f (x)1&: (1&;)[1& f (x)]&; [&f $(x)]

&[1& f (x)]1&; (1&:) f (x)&: f $(x)]�( f (x))2(1&:) (7.20)

Evaluating (7.20) at a fixed point, x, of f, we get

(;�$:)[(1&x);&1 x:&1�(1&x)2;][(1&x) :+;x]

=[&f $(x)][x&:(1&x)&;�x2(1&:)][x(1&;)+(1&:)(1&x)]

(7.21)

Thus, at a fixed point, x, of f:

[&f $(x)]=(;�$:)[(1&x) :+;x] x�[x(1&;)+(1&:)(1&x)](1&x)

(7.22)

Since the (unique) fixed point, b=k$ , of f, satisfies b=$:�(;+$:), we
have

(;�$:)=(1&b)�b (7.23)

Using this in (7.22), we get

[&f $(b)]=[(1&b) :+;b]�[b(1&;)+(1&:)(1&b)] (7.24)

Now, [(1&b) :+;b] �[b(1&;) + (1&:)(1&b)] = [[(1&b)�b] :+;]�
[(1&;) + (1&:)[(1 & b)�b]] = [(;�$:) :+;]�[(1&;) + (1&:)(;�$:)]
=[;(:+$:)]�[(1&;) $:+(1&:) ;]. Thus, if [&f $(b)]�1, we get
;:+;$:�$:&;$:+;&:;, which yields

$�[(2:&1) ;�:(1&2;)] (7.25)

Clearly (7.25) violates (7.3), so we must have [&f $(b)]>1, establishing (7.4).
Condition US can be verified in a more straightforward man-

ner. The numerator of R(x) is ;x:(1&x);&1 :(1&:) x:&2(1&x);+
:x:&1(1&x); ;(1&;) x:(1&x);&2. The denominator of R(x) is
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[:x:&1(1&x);+;x:(1&x);&1] :;x:&1(1&x);&1. Thus, we obtain R(x),
after simplification, as:

R(x)=[(1&:)+x(:&;)]�[:&x(:&;)] (7.26)

Since :>;, as x decreases, we have the numerator of (7.26) decreasing and
the denominator increasing, so R(x) decreases. Further, we have limx � 0 R(x)
=(1&:)�:<1, since 1>:>1�2. This verifies Condition US.

We now examine two sub-cases of the above example in a bit more
detail: (i) :+;=1; (ii) :+;<1.

Case 1 (:+;=1). Here, the utility function is not strictly concave.
However, (A.8) is still satisfied so long as :{(1�2). The critical discount
factor, $*, and the corresponding stationary optimal stock, k$* , are given
by: $*=(;�:); k$*=(1�2).

For $*<$<1, the stationary optimal stock, k$ , is globally asymptoti-
cally stable. For 0<$<$*, optimal programs from all initial stocks other
than k$ converge to the period-two boundary cycle (0,1). At the bifurcation

FIG. 5. Weitzman�Samuelson example: Bifurcation diagram: :+;=1; :=0.55.
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point, $*, we have ``neutral cycles:'' starting from any initial stock, x # X,
the two-period cycle (x, 1&x) is optimal. (See Fig. 5).

Weitzman's example (as reported in Samuelson (1973)) has :=;=(1�2).
Thus, it is borderline in two ways: it satisfies :+;=1, and also :=;. For
every 0<$<1, and for every x in X, the two-period cycle (x, y) is optimal,
where y=[$2(1&x)]�[x+$2(1&x)].

Case 2 (:+$<1). Here, the utility function is strictly concave, and
(A.8) clearly holds. The critical discount factor, $*, and the corresponding
stationary optimal stock, k$* , are given by:

$*=;(2:&1)�:(1&2;); k$*=(2:&1)�2(:&;)

For $*<$<1, the stationary optimal stock, k$ , is globally asymptotically
stable.

For 0<$<$*, optimal programs from all initial stocks other than k$

converge to a unique period-two interior cycle. This interior cycle has
``small'' amplitude for $ close to $*. The amplitude increases as $ falls, and
as $ converges to zero, this two-period cycle converges to (0,1). Thus, we
obtain here the standard period-doubling flip bifurcation. (See Fig. 1.)

Notice that the theory developed in the paper ensures that we can obtain
the precise bifurcation diagram of the family of dynamical system (X, h$),
even though we do not know (and have not tried to estimate) h$ for any
of the $-values.

8. VARIATIONS ON SUTHERLAND'S EXAMPLE

We discuss in this section a variation on the example of Sutherland [36].
The utility function, u: 0 � R is given by:

u(x, z)=&ax2&bxz&cz2+dx (8.1)

where (a, b, c, d )>>0, 4ac>b2, b>2c, 2(a+b+c)>d>2b(a&c)�(b&2c).
Then, assumptions (A.1), (A.2+), (A.3+), (A.4+), (A.5), (A.6+), (A.7)
and (A.8) are satisfied.

We can examine the solution to (P), given any x # X, as follows. Since
u is strictly concave on 0, there is a unique solution, f (x), to (P). Define
W(x, z)#[u(x, z)+$u(z, x)], for (x, z) in 0, and note that for each
x # X, W2(x, z)=u2(x, z)+$u1(z, x), so that

W2(x, z)=&bx&2cz+$[&2az&bx+d] (8.2)
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Given (8.2), there is a unique stationary optimal stock, k$ , for each
0<$<1, given by

k$=$d�[(b+2c)+$(b+2a)] (8.3)

Note that (b+2c)+$(b+2a)>$(b+2c)+$(b+2a)=$(2a+2b+2c)>$d,
by assumption. Thus, we have 0<k$<1. Using (8.3), it is clear that k$ is
monotonically increasing in $, with

lim
$ � 1

k$=[d�2(a+b+c)]; lim
$ � 0

k$=0 (8.4)

We now proceed to verify Condition HI. Define a critical discount
factor, $*, as

$*=(b&2c)�(2a&b) (8.5)

Note that $*>0, since 2a>b>2c. Also, (2a&b)&(b&2c)=2a+2c&2b
>0, so $*<1.

We first show that if F(x)=x has three solutions 0�a<b<c�1, and
${$*, then it must be the case that 0<$<$*, and b must be the fixed
point of f. Next, we show that if 0<$<$*, the fixed point of f, k$ , satisfies
[&f $(k$)]>1.

To establish the first step, suppose instead that 1>$>$*. Define

,(x)=[$d�2(a$+c)]&[b(1+$)�2(a$+c)] x (8.6)

for x # X. We observe that:

,(k$)=k$ ; ,(0)>1; ,(1)>0 (8.7)

The first part of (8.7) simply involves using (8.3) in (8.6). To check that
,(0)>1, note that if ,(0)=[$d�2(a$+c)]�1, then, $(d&2a)�2c, so that
[(b&2c)�(2a&b)]=$*<$�[2c�(d&2a)], and this implies d�[2b(a&c)�
(b&2c)], a contradiction to our restriction on d. To check that ,(1)>0,
suppose on the contrary that $d&b(1+$)�0. Then, we get (b�d)�
$�(1+$)>$*�(1+$*)=(b&2c)�2(a&c), so that d�2b(a&c)�(b&2c),
which again contradicts our restriction on d.

Using (8.7) and 0<k$<1, there is 0<x
�
<k$ such that ,(x

�
)=1. This x

�is given by

x
�
=[$d&2(a$+c)]�b(1+$) (8.8)
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Defining x� to be ,(1), we note that x� =,(1)<,(k$)=k$ . Further,
using (8.6),

x� =[$d&b(1+$)]�2(a$+c) (8.9)

so that, using the equation x� =,(1)=,(,(x
�
)), [b(1+$)�2(a$+c)]<1,

and 1>$>$*, we have x� >x
�
. To verify this last assertion, note that x� =

,(1)=,(,(x
�
))=%(1&#)+#2x

�
, where %=[$d�2(a$+c)] and #=b(1+$)�

2(a$+c) < 1 for 1 > $ > $*. Thus if x� � x
�
, we must have %(1&#)�

(1&#2) x
�
=(1&#)(1+#) x

�
, and so x

�
�%�(1+#). But %�(1+#)=k$ , so

x
�
=k$ , a contradiction. This establishes that x� >x

�
.

Now, we can define

f (x)={1
,(x)

for 0�x�x
�

for x
�
<x�1

(8.10)

and check, by using the Kuhn�Tucker theorem, that f (x) solves (P) uniquely.
For x

�
<x�1, this is clear because W2(x, ,(x))=0, using (8.2) and (8.6).

Thus, W(x, z)&W(x, f (x))�W2(x, ,(x))(z& f (x))=0 for all z # X. For
0�x�x

�
, we have W2(x, 1)=&bx(1+$)+$[d&2a]&2c�&bx

�
(1+$)

+ $[d & 2a] & 2c = &[$d&2(a$+c)]+$[d&2a]&2c=0. Thus, for
0�x�x

�
, W(x, z)&W(x, f (x))�W2(x, 1)(z&1)�0 for all z # X.

Using (8.10), we can obtain

F(x)={x�
x� +(x&x

�
) #2

for 0�x�x
�

for x
�
<x�1

(8.11)

Clearly, for 0�x�x
�
, F(x)=F(x

�
)=x� >x

�
�x, so there is no fixed point of

F in this range of x. For x
�
<x�1, F(x)=x� +(x&x

�
) #2, so there is a

unique fixed point, given by k=[x� &x
�
#2]�(1&#2)=%(1&#)�(1&#2)=

%�(1+#)=k$ . (See Fig. 6 for graphs of f and F ). This contradiction estab-
lishes that 0<$<$*.

We now subdivide our analysis into three parts. Define

$1=2c�(d&2a); $2=b�(d&b) (8.12)

We note that 0<$1<$2<$*. Consider, first, the case in which $2�$<$*.
Here, we have

,(0)>1, ,(1)�0, ,(k$)=k$ (8.13)

Defining x
�

and x� by (8.8) and (8.9) respectively, we have x� =,(1)<,(k$)
=k$ , and furthermore, x� �x

�
. To verify this last inequality, note that if
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FIG. 6. Sutherland's example: Diagram of F= f 2 for 1>$>$*.

x� >x
�
, then %(#&1)=#2x

�
&x� <(#2&1) x� , and so x

�
>%�(#+1)=k$ , since

#>1. This contradiction establishes that x� �x
�
.

We can now define x~ such that ,(x~ )=x
�
. Since ,(1)=x� �x

�
and ,(k$)=

k$<1=,(x
�
), so that x

�
<k$=,(k$), x~ is well-defined, and k$<x~ �1. Now

defining

f (x)={1
,(x)

for 0�x�x
�

for x
�
<x�1

(8.14)

we can check that f solves (P) uniquely. Furthermore, we get

x� for 0�x�x
�

F(x)={x� +#2(x&x
�
) for x

�
<x<x~ (8.15)

1 for x~ �x�1
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FIG. 7. Sutherland's example: Diagram of F= f 2 for $2�$<$*.

The fixed points of F are x� , k$ and 1, and F $(k$)=#2>1. (For graphs of
f and F, see Fig. 7).

Next, we consider the case in which $1�$<$2 . Here we have

,(0)�1, ,(1)<0, ,(k$)=k$ (8.16)

Defining x
�

by (8.8), x$ by ,(x$)=0, and x~ by ,(x~ )=x
�
, we note that

0�x
�
<k$<x~ <x$<1. Now, if we define x" by ,(x")=x$, we can check

that x
�
<x"<k$ . Then, we can define

1 for 0�x�x
�

f (x)={,(x) for x
�
<x<x$ (8.17)

0 for x$�x�1
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and verify that this f solves (P) uniquely. Furthermore, we obtain

0 for 0�x�x"

F(x)={#2(x&x") for x"<x<x~ (8.18)

1 for x~ �x�1

The fixed points of F are 0, k$ and 1, and F $(k$)=#2>1. (For graphs of
f and F, see Fig. 8).

Finally, we consider the case in which 0<$<$1 . Here, we have

0<,(0)<1, ,(1)<0, ,(k$)=k$ (8.19)

Defining x$ by ,(x$)=0, and x" by ,(x")=x$, we can check that 0<x"<
k$<x$<%=,(0)<1.

FIG. 8. Sutherland's example: Diagram of F= f 2 for $1�$<$2 .
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Then, we can define

f (x)={,(x)
0

for x<x<x$
for x$�x�1

(8.20)

and verify that this f solves (P) uniquely. Furthermore, we have

0 for 0�x�x"

F(x)={#2(x&x") for x"<x<x$ (8.21)

% for x$�x�1

The fixed points of F are 0, k$ , and %, and F $(k$)=#2>1. (The graphs of
f and F are shown in Fig. 9). This completes our verification of Condition HI.

Condition US can be verified as follows. The numerator of R(x)
is (bx+2cx) 2a+(d&2ax&bx) 2c, while the denominator of R(x) is

FIG. 9. Sutherland's example: Diagram of F= f 2 for 0<$<$1 .
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[(d&2ax&bx)+(bx+2cx)] b. Thus, we get R(x)=[2cd&2bcx+2abx]�
[db&2abx+2bcx]=[2cd+2bx(a&c)]�[db&2bx(a&c)]. As x increases,
2bx(a&c) increases since a>c. Thus, R(x) increases as x increases. Also,
limx � 0 R(x)=(2c�b) # (0, 1).

Our analysis above yields the global bifurcation diagram shown in
Fig. 10. For 1>$>$*, the stationary optimal stock, k$ , is globally stable,
and there are no other periodic points. For $2�$<$*, the stationary
optimal stock, k$ is locally unstable, and there are two periodic points,
x� and 1. For all x # X, x{k$ , the optimal program (xt)

�
0 from x has x�

and 1 as its limit points. Further, as $ decreases to $2 , x� decreases to
0. For $1�$<$2 , the stationary optimal stock, k$ , is locally unstable,
and there are two periodic points, 0 and 1, which are also the limit points
of optimal programs from all x # X, x{k$ . Finally, for 0<$<$1 ,
the stationary optimal stock, k$ , is locally unstable, and there are two
periodic points, 0 and %, which are also the limit points of optimal
programs from all x # X, x{k$ . Further, as $ decreases to 0, % decreases
to 0.

FIG. 10. Sutherland's example: Bifurcation diagram.
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APPENDIX

The purpose of this appendix is to show that each bilateral Dini derivative
of h, at the unique stationary optimal stock k, equals one of the roots of the
characteristic equation (5.5) [associated with the Ramsey�Euler equation
(5.1) at x=k].

Before proving the above result, we note that if (x, h(x)) is in int 0, and
x{k, then

u~ 21+[(&u~ 22)+$(&u� 11)][[h(x)&h(k)]�(k&x)]

&$(&u� 12)[[h2(k)&h2(x)]�(k&x)]=0 (A.1)

where u~ 21 and u~ 22 are evaluated at an appropriate convex combination of
(x, h(x)) and (k, k), and u� 11 and u� 12 are evaluated at an appropriate convex
combination of (h(x), h2(x)) and (k, k), as given by the Mean-Value theorem.
To see this, write the Ramsey�Euler equations:

u2(k, k)+$u1(k, k)=0; u2(x, h(x))+$u1(h(x), h2(x))=0

Use the Mean Value theorem to get

u~ 21(k&x)+(&u~ 22)(h(x)&k)+$(&u� 11)(h(x)&k)

&$(&u� 12)[k&h2(x)]=0

Dividing by (k&x){0, we obtain (A.1).
Let us define

m=min _lim inf
x � k+ } h(x)&h(k)

x&k } , lim inf
x � k& } h(x)&h(k)

x&k }&
M=max _lim sup

x � k+ } h(x)&h(k)
x&k } , lim sup

x � k& } h(x)&h(k)
x&k }&

Let *1 and *2 be the roots of the characteristic equation associated with
the Ramsey�Euler equation (5.1). Then *1 , *2 are real and negative. We
claim that

(i) M is either (&*1) or (&*2); (ii) m is either (&*1) or (&*2). (A.2)

We will establish only (i), since the proof of (ii) is similar. Let us define:

g(*)=(&u21(k, k))+(&u22(k, k)) *+$(&u11(k, k)) *+$(&u12(k, k)) *2
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Claim 1. g(&M)>0 is not possible. For if g(&M)>0, then

(&u21(k, k))+[(&u22(k, k))+$(&u11(k, k))](&M)

+$(&u12(k, k)) M2>0

We can choose =>0 such that

(&u21(k, k))>[(&u22(k, k))+$(&u11(k, k))](M+=)

&$(&u12(k, k))(M2&=2)

Given =>0, one can find zs � k (zs{k) such that

[h(k)&h(zs)]�(zs&k)�(M&=) (A.3)

One can then find S$ and xs such that h(xs)=zs for s�S$. Then xs � k
(xs{k) as s � �, and one can find S�S$, such that for s�S,

[h(xs)&h(k)]�(k&xs)�(M+=) (A.4)

Using (A.1) with x=xs, (A.3) and (A.4), we have

(&u~ 21)=_(&u~ 22)+$(&u� 11)&$(&u� 12) \h(zs)&h(k)
k&zs +&_h(xs)&h(k)

k&xs &
�[(&u~ 22)+$(&u� 11)&$(&u� 12)(M&=)] _h(xs)&h(k)

k&xs &
�[(&u~ 22)+$(&u� 11)&$(&u� 12)(M&=)](M+=)

Letting xs � k, we get (&u21(k, k))�[(&u22(k, k))+$(&u11(k, k))&
$(&u12(k, k))(M&=)](M+=)<(&u21(k, k)), a contradiction, which
establishes the claim.

Claim 2. g(&M)<0 is not possible. Otherwise,

(&u21(k, k))+[(&u22(k, k))+$(&u11(k, k))](&M)

+$(&u12(k, k)) M2<0

We can choose =>0 such that

(&u21(k, k))<[(&u22(k, k))+$(&u11(k, k))](M&=)

&$(&u12(k, k))(M2&=2)

One can find xs � k (xs{k) such that

[h(k)&h(xs)]�(xs&k)�(M&=) (A.5)
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Define zs=h(xs). Then zs � k (zs{k) and we can find S, such that for s�S,

[h(k)&h(zs)]�(zs&k)�(M+=) (A.6)

Using (A.1) with x=xs, (A.5) and (A.6), we have

(&u~ 21)=_(&u~ 22)+$(&u� 11)&$(&u� 12) _h(k)&h(zs)
zs&k &&_h(xs)&h(k)

k&xs &
�[(&u~ 22)+$(&u� 11)&$(&u� 12)(M+=)](M&=)

Letting xs � k, we get

(&u21(k, k))�[(&u22(k, k))+$(&u11(k, k))](M&=)

&$(&u12(k, k))(M2&=2)>(&u21(k, k)),

a contradiction. From Claims 1 and 2, we get g(&M)=0, so M=(&*1)
or (&*2).
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